Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451290

RESUMO

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Assuntos
Craniossinostoses , Displasia Ectodérmica , Perda Auditiva Neurossensorial , Heterozigoto , Humanos , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Masculino , Feminino , Craniossinostoses/genética , Fenótipo , Pré-Escolar , Deformidades Congênitas dos Membros/genética , Criança , Mutação , Lactente , MAP Quinase Quinase Quinases/genética
2.
J Inherit Metab Dis ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932875

RESUMO

The study of inborn errors of neurotransmission has been mostly focused on monoamine disorders, GABAergic and glycinergic defects. The study of the glutamatergic synapse using the same approach than classic neurotransmitter disorders is challenging due to the lack of biomarkers in the CSF. A metabolomic approach can provide both insight into their molecular basis and outline novel therapeutic alternatives. We have performed a semi-targeted metabolomic analysis on CSF samples from 25 patients with neurogenetic disorders with an important expression in the glutamatergic synapse and 5 controls. Samples from patients diagnosed with MCP2, CDKL5-, GRINpathies and STXBP1-related encephalopathies were included. We have performed univariate (UVA) and multivariate statistical analysis (MVA), using Wilcoxon rank-sum test, principal component analysis (PCA), and OPLS-DA. By using the results of both analyses, we have identified the metabolites that were significantly altered and that were important in clustering the respective groups. On these, we performed pathway- and network-based analyses to define which metabolic pathways were possibly altered in each pathology. We have observed alterations in the tryptophan and branched-chain amino acid metabolism pathways, which interestingly converge on LAT1 transporter-dependency to cross the blood-brain barrier (BBB). Analysis of the expression of LAT1 transporter in brain samples from a mouse model of Rett syndrome (MECP2) revealed a decrease in the transporter expression, that was already noticeable at pre-symptomatic stages. The study of the glutamatergic synapse from this perspective advances the understanding of their pathophysiology, shining light on an understudied feature as is their metabolic signature.

3.
Hum Genomics ; 17(1): 85, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710353

RESUMO

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the methyl-CpG-binding protein 2 gene (MECP2). MeCP2 is a multi-functional protein involved in many cellular processes, but the mechanisms by which its dysfunction causes disease are not fully understood. The duplication of the MECP2 gene causes a distinct disorder called MECP2 duplication syndrome (MDS), highlighting the importance of tightly regulating its dosage for proper cellular function. Additionally, some patients with mutations in genes other than MECP2 exhibit phenotypic similarities with RTT, indicating that these genes may also play a role in similar cellular functions. The purpose of this study was to characterise the molecular alterations in patients with RTT in order to identify potential biomarkers or therapeutic targets for this disorder. METHODS: We used a combination of transcriptomics (RNAseq) and proteomics (TMT mass spectrometry) to characterise the expression patterns in fibroblast cell lines from 22 patients with RTT and detected mutation in MECP2, 15 patients with MDS, 12 patients with RTT-like phenotypes and 13 healthy controls. Transcriptomics and proteomics data were used to identify differentially expressed genes at both RNA and protein levels, which were further inspected via enrichment and upstream regulator analyses and compared to find shared features in patients with RTT. RESULTS: We identified molecular alterations in cellular functions and pathways that may contribute to the disease phenotype in patients with RTT, such as deregulated cytoskeletal components, vesicular transport elements, ribosomal subunits and mRNA processing machinery. We also compared RTT expression profiles with those of MDS seeking changes in opposite directions that could lead to the identification of MeCP2 direct targets. Some of the deregulated transcripts and proteins were consistently affected in patients with RTT-like phenotypes, revealing potentially relevant molecular processes in patients with overlapping traits and different genetic aetiology. CONCLUSIONS: The integration of data in a multi-omics analysis has helped to interpret the molecular consequences of MECP2 dysfunction, contributing to the characterisation of the molecular landscape in patients with RTT. The comparison with MDS provides knowledge of MeCP2 direct targets, whilst the correlation with RTT-like phenotypes highlights processes potentially contributing to the pathomechanism leading these disorders.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Síndrome de Rett , Humanos , Síndrome de Rett/genética , Multiômica , Processamento Pós-Transcricional do RNA
6.
Clin Case Rep ; 11(4): e7275, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113642

RESUMO

Key Clinical Message: The presence of more than one genetic/genomic disorder is not uncommon. It is therefore essential to continuously consider new signs and symptoms over time. Administration of gene therapy could be extremely difficult in particular situations. Abstract: A 9-month-old boy presented to our department for evaluation of developmental delay. We found that he was affected by intermediate junctional epidermolysis bullosa (COL17A1, c.3766 + 1G > A, homozygous), Angelman syndrome (5,5 Mb deletion of 15q11.2-q13.1), and autosomal recessive deafness type 57 (PDZD7, c.883C > T, homozygous).

7.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674476

RESUMO

In this article, we identified a novel epileptogenic variant (G307R) of the gene SLC6A1, which encodes the GABA transporter GAT-1. Our main goal was to investigate the pathogenic mechanisms of this variant, located near the neurotransmitter permeation pathway, and compare it with other variants located either in the permeation pathway or close to the lipid bilayer. The mutants G307R and A334P, close to the gates of the transporter, could be glycosylated with variable efficiency and reached the membrane, albeit inactive. Mutants located in the center of the permeation pathway (G297R) or close to the lipid bilayer (A128V, G550R) were retained in the endoplasmic reticulum. Applying an Elastic Network Model, to these and to other previously characterized variants, we found that G307R and A334P significantly perturb the structure and dynamics of the intracellular gate, which can explain their reduced activity, while for A228V and G362R, the reduced translocation to the membrane quantitatively accounts for the reduced activity. The addition of a chemical chaperone (4-phenylbutyric acid, PBA), which improves protein folding, increased the activity of GAT-1WT, as well as most of the assayed variants, including G307R, suggesting that PBA might also assist the conformational changes occurring during the alternative access transport cycle.


Assuntos
Epilepsias Mioclônicas , Proteínas da Membrana Plasmática de Transporte de GABA , Bicamadas Lipídicas , Humanos , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia
8.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674969

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disease caused almost exclusively by mutations to the MeCP2 gene. This disease may be regarded as a synaptopathy, with impairments affecting synaptic plasticity, inhibitory and excitatory transmission and network excitability. The complete understanding of the mechanisms behind how the transcription factor MeCP2 so profoundly affects the mammalian brain are yet to be determined. What is known, is that MeCP2 involvement in activity-dependent expression programs is a critical link between this protein and proper neuronal activity, which allows the correct maturation of connections in the brain. By using RNA-sequencing analysis, we found several immediate-early genes (IEGs, key mediators of activity-dependent responses) directly bound by MeCP2 at the chromatin level and upregulated in the hippocampus and prefrontal cortex of the Mecp2-KO mouse. Quantification of the IEGs response to stimulus both in vivo and in vitro detected an aberrant expression pattern in MeCP2-deficient neurons. Furthermore, altered IEGs levels were found in RTT patient's peripheral blood and brain regions of post-mortem samples, correlating with impaired expression of downstream myelination-related genes. Altogether, these data indicate that proper IEGs expression is crucial for correct synaptic development and that MeCP2 has a key role in the regulation of IEGs.


Assuntos
Síndrome de Rett , Camundongos , Animais , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Genes Precoces , Proteína 2 de Ligação a Metil-CpG/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Mamíferos/metabolismo
9.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806177

RESUMO

There are challenges in the genetic diagnosis of rare diseases, and pursuing an optimal strategy to identify the cause of the disease is one of the main objectives of any clinical genomics unit. A range of techniques are currently used to characterize the genomic variability within the human genome to detect causative variants of specific disorders. With the introduction of next-generation sequencing (NGS) in the clinical setting, geneticists can study single-nucleotide variants (SNVs) throughout the entire exome/genome. In turn, the number of variants to be evaluated per patient has increased significantly, and more information has to be processed and analyzed to determine a proper diagnosis. Roughly 50% of patients with a Mendelian genetic disorder are diagnosed using NGS, but a fair number of patients still suffer a diagnostic odyssey. Due to the inherent diversity of the human population, as more exomes or genomes are sequenced, variants of uncertain significance (VUSs) will increase exponentially. Thus, assigning relevance to a VUS (non-synonymous as well as synonymous) in an undiagnosed patient becomes crucial to assess the proper diagnosis. Multiple algorithms have been used to predict how a specific mutation might affect the protein's function, but they are far from accurate enough to be conclusive. In this work, we highlight the difficulties of genomic variability determined by NGS that have arisen in diagnosing rare genetic diseases, and how molecular modelling has to be a key component to elucidate the relevance of a specific mutation in the protein's loss of function or malfunction. We suggest that the creation of a multi-omics data model should improve the classification of pathogenicity for a significant amount of the detected genomic variability. Moreover, we argue how it should be incorporated systematically in the process of variant evaluation to be useful in the clinical setting and the diagnostic pipeline.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Exoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação
11.
Eur J Med Genet ; 65(3): 104442, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35093607

RESUMO

The GRIA3 gene is located in the X chromosome and encodes for one of the subunits (iGluR3) of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), an excitatory synaptic transmission receptor present in most parts of the brain. iGluR3 dysfunction has been associated with both abnormal memory formation and learning. It has been observed in patients with different neurological and cognitive disorders, including epilepsy. Three different de novo missense variants of GRIA3 have recently been reported in patients with Developmental and Epileptic Encephalopathy (DEE). We report on a female pediatric patient with DEE whose clinical picture mimicked structural epilepsy. We give a detailed description of our patient's most important electro-clinical features. Genetic analysis revealed that the patient carried a de novo missense variant in GRIA3 (c.2359G>A; p.Glu787Lys). The p.Glu787Lys variant had previously been reported in a male pediatric patient. Additionally, we studied iGluR3 expression in the patient and control fibroblasts. We found significantly lower iGluR3 expression in the patient's fibroblasts than in controls and different responses to glutamate treatment. In summary, our report expands knowledge of GRIA3 variants affecting boys and girls, describes functional studies of these variants, and provides an extensive review of the literature concerning GRIA3 genetic variants.


Assuntos
Epilepsia , Encéfalo , Criança , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Humanos , Mutação de Sentido Incorreto
12.
Mol Ther Nucleic Acids ; 27: 621-644, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036070

RESUMO

Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the MeCP2 gene for which no cure is yet available. Analysis of the noncoding RNA profile corresponding to the brain-abundant circular RNA (circRNA) and transcribed-ultraconserved region (T-UCR) populations in a mouse model of the disease reveals widespread dysregulation and enrichment in glutamatergic excitatory signaling and microtubule cytoskeleton pathways of the corresponding host genes. Proteomic analysis of hippocampal samples from affected individuals confirms abnormal levels of several cytoskeleton-related proteins together with key alterations in neurotransmission. Importantly, the glutamate receptor GRIA3 gene displays altered biogenesis in affected individuals and in vitro human cells and is influenced by expression of two ultraconserved RNAs. We also describe post-transcriptional regulation of SIRT2 by circRNAs, which modulates acetylation and total protein levels of GluR-1. As a consequence, both regulatory mechanisms converge on the biogenesis of AMPA receptors, with an effect on neuronal differentiation. In both cases, the noncoding RNAs antagonize MeCP2-directed regulation. Our findings indicate that noncoding transcripts may contribute to key alterations in Rett syndrome and are not only useful tools for revealing dysregulated processes but also molecules of biomarker value.

13.
Neurology ; 98(9): e912-e923, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012964

RESUMO

BACKGROUND AND OBJECTIVES: Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. METHODS: A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. RESULTS: We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. DISCUSSION: Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.


Assuntos
Doenças do Sistema Nervoso Central , Exoma , Substância Branca , Sequência de Bases , Doenças do Sistema Nervoso Central/genética , Exoma/genética , Humanos , Substância Branca/patologia , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
14.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638716

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several "omics", and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Diagnóstico Molecular , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Sequenciamento Completo do Genoma , Humanos
16.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502518

RESUMO

Methyl CpG binding protein 2 (MECP2) is located at Xq28 and is a multifunctional gene with ubiquitous expression. Loss-of-function mutations in MECP2 are associated with Rett syndrome (RTT), which is a well-characterized disorder that affects mainly females. In boys, however, mutations in MECP2 can generate a wide spectrum of clinical presentations that range from mild intellectual impairment to severe neonatal encephalopathy and premature death. Thus, males can be more difficult to classify and diagnose than classical RTT females. In addition, there are some variants of unknown significance in MECP2, which further complicate the diagnosis of these children. Conversely, the entire duplication of the MECP2 gene is related to MECP2 duplication syndrome (MDS). Unlike in RTT, in MDS, males are predominantly affected. Usually, the duplication is inherited from an apparently asymptomatic carrier mother. Both syndromes share some characteristics, but also differ in some aspects regarding the clinical picture and evolution. In the following review, we present a thorough description of the different types of MECP2 variants and alterations that can be found in males, and explore several genotype-phenotype correlations, although there is still a lot to understand.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Encefalopatias/genética , Disfunção Cognitiva/genética , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Retardo Mental Ligado ao Cromossomo X/genética , Mutação/genética , Fenótipo , Síndrome de Rett/genética
17.
Parkinsonism Relat Disord ; 91: 19-22, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454394

RESUMO

INTRODUCTION: Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by a deficiency of acid ß-glucosidase encoded by the GBA gene. In patients with GD, childhood onset parkinsonian features have been rarely described. METHODS: Twin siblings with GD are described, including clinical follow-up and treatment response. Bone marrow, enzyme activity studies and genotyping were performed. RESULTS: By age 9 months, symptoms at onset were thrombocytopenia and splenomegaly. By age 2, hypokinesia, bradykinesia and oculomotor apraxia were observed. By age 5 a complete rigid hypokinetic syndrome was stablished in both patients, including bradykinesia, tremor and rigidity. Treatment with imiglucerase, miglustat, ambroxol and levodopa were performed. Levodopa showed a good response with improvement in motor and non-motor skills. Foamy cells were found in the bone marrow study. Glucocerebrosidase activity was 28% and 26%. Sanger sequencing analysis identified a missense mutation and a complex allele (NP_000148: p.[(Asp448His)]; [(Leu422Profs*4)]) in compound heterozygosity in GBA gene. CONCLUSIONS: Two siblings with neuronopathic GD with an intermediate form between type 2 and 3, with a systemic and neurological phenotype are described. The complex neurological picture included a hypokinetic-rigid and tremor syndrome that improved with levodopa treatment. These conditions together have not been previously described in pediatric GD. We suggest that in children with parkinsonian features, lysosomal storage disorders must be considered, and a levodopa trial must be performed. Moreover, this report give support to the finding that GBA and parkinsonian features share biological pathways and highlight the importance of lysosomal mechanisms in parkinsonism pathogenesis, what might have therapeutic implications.


Assuntos
Antiparkinsonianos/uso terapêutico , Doenças em Gêmeos/genética , Doença de Gaucher/genética , Levodopa/uso terapêutico , Transtornos Parkinsonianos/genética , Pré-Escolar , Doenças em Gêmeos/tratamento farmacológico , Feminino , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/patologia , Humanos , Lactente , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Fenótipo , Gêmeos/genética
18.
Pediatr Neurol ; 119: 40-44, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894639

RESUMO

BACKGROUND: The ATP7A gene encodes a copper transporter whose mutations cause Menkes disease, occipital horn syndrome (OHS), and, less frequently, ATP7A-related distal hereditary motor neuropathy (dHMN). Here we describe a family with OHS caused by a novel mutation in the ATP7A gene, including a patient with a comorbid dHMN that worsened markedly after being treated with copper histidinate. METHODS: We studied in detail the clinical features of the patients and performed a genomic analysis by using TruSight One Expanded Sequencing Panel. Subsequently, we determined the ATP7A and ATP7B expression levels, mitochondrial membrane potential, and redox balance in cultured fibroblasts of Patient 1. RESULTS: We found a novel ATP7A late truncated mutation p.Lys1412AsnfsX15 in the two affected members of this family. The co-occurrence of OHS and dHMN in Patient 1 reveals the variable phenotypic expressivity of the variant. A severe clinical and neurophysiologic worsening was observed in the dHMN of Patient 1 when he was treated with copper replacement therapy, with a subsequent fast recovery after the copper histidinate was withdrawn. Functional studies revealed that the patient had low levels of both ATP7A and ATP7B, the other copper transporter, and high levels of superoxide ion in the mitochondria. CONCLUSIONS: Our findings broaden the clinical spectrum of ATP7A-related disorders and demonstrate that two clinical phenotypes can occur in the same patient. The copper-induced toxicity and low levels of both ATP7A and ATP7B in our patient suggest that copper accumulation in motor neurons is the pathogenic mechanism in ATP7A-related dHMN.


Assuntos
ATPases Transportadoras de Cobre/genética , Cobre/toxicidade , Cútis Laxa/genética , Síndrome de Ehlers-Danlos/genética , Adulto , Criança , Cobre/sangue , Cútis Laxa/sangue , Cútis Laxa/diagnóstico , Cútis Laxa/fisiopatologia , Síndrome de Ehlers-Danlos/sangue , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/fisiopatologia , Humanos , Masculino , Linhagem , Adulto Jovem
19.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924139

RESUMO

The diagnosis of neuromuscular diseases (NMDs) has been progressively evolving from the grouping of clinical symptoms and signs towards the molecular definition. Optimal clinical, biochemical, electrophysiological, electrophysiological, and histopathological characterization is very helpful to achieve molecular diagnosis, which is essential for establishing prognosis, treatment and genetic counselling. Currently, the genetic approach includes both the gene-targeted analysis in specific clinically recognizable diseases, as well as genomic analysis based on next-generation sequencing, analyzing either the clinical exome/genome or the whole exome or genome. However, as of today, there are still many patients in whom the causative genetic variant cannot be definitely established and variants of uncertain significance are often found. In this review, we address these drawbacks by incorporating two additional biological omics approaches into the molecular diagnostic process of NMDs. First, functional genomics by introducing experimental cell and molecular biology to analyze and validate the variant for its biological effect in an in-house translational diagnostic program, and second, incorporating a multi-omics approach including RNA-seq, metabolomics, and proteomics in the molecular diagnosis of neuromuscular disease. Both translational diagnostics programs and omics are being implemented as part of the diagnostic process in academic centers and referral hospitals and, therefore, an increase in the proportion of neuromuscular patients with a molecular diagnosis is expected. This improvement in the process and diagnostic performance of patients will allow solving aspects of their health problems in a precise way and will allow them and their families to take a step forward in their lives.


Assuntos
Biomarcadores , Técnicas de Diagnóstico Molecular , Doenças Neuromusculares/diagnóstico , Alelos , Animais , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica/métodos , Humanos , Metabolômica/métodos , Técnicas de Diagnóstico Molecular/métodos , Doenças Neuromusculares/etiologia , Fenótipo , Proteômica/métodos , Pesquisa Translacional Biomédica
20.
Biomedicines ; 9(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546327

RESUMO

Methyl-CpG-binding protein 2 (MeCP2) is an X-linked epigenetic modulator whose dosage is critical for neural development and function. Loss-of-function mutations in MECP2 cause Rett Syndrome (RTT, OMIM #312750) while duplications in the Xq28 locus containing MECP2 and Interleukin-1 receptor-associated kinase 1 (IRAK1) cause MECP2 duplication syndrome (MDS, OMIM #300260). Both are rare neurodevelopmental disorders that share clinical symptoms, including intellectual disability, loss of speech, hand stereotypies, vasomotor deficits and seizures. The main objective of this exploratory study is to identify novel signaling pathways and potential quantitative biomarkers that could aid early diagnosis and/or the monitoring of disease progression in clinical trials. We analyzed by RT-PCR gene expression in whole blood and microRNA (miRNA) expression in plasma, in a cohort of 20 females with Rett syndrome, 2 males with MECP2 duplication syndrome and 28 healthy controls, and correlated RNA expression with disease and clinical parameters. We have identified a set of potential biomarker panels for RTT diagnostic and disease stratification of patients with microcephaly and vasomotor deficits. Our study sets the basis for larger studies leading to the identification of specific miRNA signatures for early RTT detection, stratification, disease progression and segregation from other neurodevelopmental disorders. Nevertheless, these data will require verification and validation in further studies with larger sample size including a whole range of ages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...